Classification Factored Gated Restricted Boltzmann Machine
نویسنده
چکیده
Factored gated restricted Boltzmann machine is a generative model, which capable to extract the transformation from an image pair. We extend this model by adding discriminative component, which allows directly use this model as a classifier, instead of using the hidden unit responses as features for another learning algorithm. To evaluate the capabilities of this model, we have created a synthetically transformed image pairs and demonstrated that the model is able to determine the velocity of object presented on two consecutive images.
منابع مشابه
Gated Boltzmann Machine in Texture Modeling
In this paper, we consider the problem of modeling complex texture information using undirected probabilistic graphical models. Texture is a special type of data that one can better understand by considering its local structure. For that purpose, we propose a convolutional variant of the Gaussian gated Boltzmann machine (GGBM) [12], inspired by the co-occurrence matrix in traditional texture an...
متن کاملFactored four way conditional restricted Boltzmann machines for activity recognition
This paper introduces a new learning algorithm for human activity recognition capable of simultaneous regression and classification. Building upon conditional restricted Boltzmannmachines (CRBMs), Factored four way conditional restricted Boltzmann machines (FFW-CRBMs) incorporate a new label layer and four-way interactions among the neurons from the different layers. The additional layer gives ...
متن کاملEstimating 3D trajectories from 2D projections via disjunctive factored four-way conditional restricted Boltzmann machines
Estimation, recognition, and near-future prediction of 3D trajectories based on their two dimensional projections available from one camera source is an exceptionally difficult problem due to uncertainty in the trajectories and environment, high dimensionality of the specific trajectory states, lack of enough labeled data and so on. In this article, we propose a solution to solve this problem b...
متن کاملSupplementary material: Learning and Selecting Features viaPoint-wise Gated Boltzmann Machines
There are many classification tasks where we are given a large number of unlabeled examples in addition to only a few labeled training examples. For such scenario, it is important to include unlabeled examples during the training to generalize well to the unseen data, and thus avoid overfitting. Larochelle and Bengio (2008) proposed the semi-supervised training of the discriminative restricted ...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015